博客
关于我
Leetcode|70. 爬楼梯【笔记】
阅读量:712 次
发布时间:2019-03-21

本文共 1026 字,大约阅读时间需要 3 分钟。

爬楼梯问题解析

爬楼梯问题要求我们计算爬到n阶楼梯的不同方法数,每次可以爬1或2阶台阶。这个问题可以通过斐波那契数列来解决,其解答方法包括递归、动态规划、矩阵快速幂等。

4种常见解法:

  • 递归方法

    递归的思路是用费波那契的性质: f(n) = f(n-1) + f(n-2)
    例子:

    import functools@functools.lru_cache(maxsize=None)def climbStairs(n: int) -> int:    if n == 1:        return 1    if n == 2:        return 2    return climbStairs(n - 1) + climbStairs(n - 2)
  • 动态规划优化

    使用动态规划存储前两步结果,节省空间。
    例子:

    def climbStairs(n: int) -> int:    if n == 1 or n == 2:        return n    a, b, temp = 1, 2, 0    for i in range(3, n + 1):        temp = a + b        a = b        b = temp    return temp
  • 斐波那契公式

    使用矩阵快速幂或公式直接计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n < 2:        return 1    sqrt5 = math.sqrt(5)    return int(( (1 + sqrt5) ** (n + 1) - (1 - sqrt5) ** (n + 1) ) / (2 * sqrt5))
  • 斐波那契数列的通项

    借助斐波那契数列的通项计算。
    例子:

    import mathdef climbStairs(n: int) -> int:    if n == 1:        return 1    elif n == 2:        return 2    elif n < 0:        return 0    return _fib(n + 1)
  • 关键点总结:

    • 问题基于斐波那契数列。
    • 递归角度计算,需缓存优化。
    • 动态规划优化空间使用,常数空间。
    • 斐波那契公式适用于大数计算。
    • 动态规划常数空间优化方案较为高效。

    转载地址:http://pgaez.baihongyu.com/

    你可能感兴趣的文章
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>
    Networkx读取军械调查-ITN综合传输网络?/读取GML文件
    查看>>
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    NFinal学习笔记 02—NFinalBuild
    查看>>
    NFS共享文件系统搭建
    查看>>
    nfs复习
    查看>>
    NFS网络文件系统
    查看>>
    nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
    查看>>
    ng 指令的自定义、使用
    查看>>
    Nginx
    查看>>
    nginx + etcd 动态负载均衡实践(二)—— 组件安装
    查看>>
    nginx + etcd 动态负载均衡实践(四)—— 基于confd实现
    查看>>
    Nginx + Spring Boot 实现负载均衡
    查看>>
    Nginx + uWSGI + Flask + Vhost
    查看>>
    Nginx - Header详解
    查看>>
    Nginx Location配置总结
    查看>>
    Nginx Lua install
    查看>>
    Nginx upstream性能优化
    查看>>
    Nginx 中解决跨域问题
    查看>>